$$$100!$$$
Your Input
Find $$$100!$$$
Solution
The factorial of a positive integer $$$n$$$ is the product of all positive integers less than or equal to $$$n$$$: $$$n! = 1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n$$$.
Thus, $$$100! = 1 \cdot 2 \cdot \ldots \cdot 99 \cdot 100 = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000.$$$
Answer
$$$100!\approx 9.33262154439442 \cdot 10^{157}$$$A
Please try a new game Rotatly