Complex Number Calculator

Perform operations on complex numbers step by step

The calculator will try to simplify any complex expression, with steps shown. It will perform addition, subtraction, multiplication, division, raising to power, and also will find the polar form, conjugate, modulus, and inverse of the complex number.

Enter an expression:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: simplify and calculate different forms of $$$i$$$

The expression is already simplified.

Polar form

For a complex number $$$a+bi$$$, polar form is given by $$$r(\cos(\theta)+i \sin(\theta))$$$, where $$$r=\sqrt{a^2+b^2}$$$ and $$$\theta=\operatorname{atan}\left(\frac{b}{a}\right)$$$

We have that $$$a=0$$$ and $$$b=1$$$

Thus, $$$r=\sqrt{\left(0\right)^2+\left(1\right)^2}=1$$$

Also, $$$\theta=\operatorname{atan}\left(\frac{1}{0}\right)=\frac{\pi}{2}$$$

Therefore, $$$i=\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$

Inverse

The inverse of $$$i$$$ is $$$\frac{1}{i}$$$

Multiply and divide by $$$i$$$ (keep in mind that $$$i^2=-1$$$):

$$${\color{red}{\left(\frac{1}{i}\right)}}={\color{red}{\left(- i\right)}}$$$

Hence, $$$\frac{1}{i}=- i$$$

Conjugate

The conjugate of $$$a + i b$$$ is $$$a - i b$$$: the conjugate of $$$i$$$ is $$$- i$$$

Modulus

The modulus of $$$a + i b$$$ is $$$\sqrt{a^{2} + b^{2}}$$$: the modulus of $$$i$$$ is $$$1$$$

Answer

$$$i=i=1.0 i$$$

The polar form of $$$i$$$ is $$$\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$

The inverse of $$$i$$$ is $$$\frac{1}{i}=- i=- 1.0 i$$$

The conjugate of $$$i$$$ is $$$- i=- 1.0 i$$$

The modulus of $$$i$$$ is $$$1$$$


Please try a new game Rotatly