Divide $$$x^{4}$$$ by $$$x - 1$$$
Related calculators: Synthetic Division Calculator, Long Division Calculator
Your Input
Find $$$\frac{x^{4}}{x - 1}$$$ using long division.
Solution
Write the problem in the special format (missed terms are written with zero coefficients):
$$$\begin{array}{r|r}\hline\\x-1&x^{4}+0 x^{3}+0 x^{2}+0 x+0\end{array}$$$
Step 1
Divide the leading term of the dividend by the leading term of the divisor: $$$\frac{x^{4}}{x} = x^{3}$$$.
Write down the calculated result in the upper part of the table.
Multiply it by the divisor: $$$x^{3} \left(x-1\right) = x^{4}- x^{3}$$$.
Subtract the dividend from the obtained result: $$$\left(x^{4}\right) - \left(x^{4}- x^{3}\right) = x^{3}$$$.
$$\begin{array}{r|rrrrr:c}&{\color{BlueViolet}x^{3}}&&&&&\\\hline\\{\color{Magenta}x}-1&{\color{BlueViolet}x^{4}}&+0 x^{3}&+0 x^{2}&+0 x&+0&\frac{{\color{BlueViolet}x^{4}}}{{\color{Magenta}x}} = {\color{BlueViolet}x^{3}}\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&{\color{BlueViolet}x^{3}} \left(x-1\right) = x^{4}- x^{3}\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\end{array}$$Step 2
Divide the leading term of the obtained remainder by the leading term of the divisor: $$$\frac{x^{3}}{x} = x^{2}$$$.
Write down the calculated result in the upper part of the table.
Multiply it by the divisor: $$$x^{2} \left(x-1\right) = x^{3}- x^{2}$$$.
Subtract the remainder from the obtained result: $$$\left(x^{3}\right) - \left(x^{3}- x^{2}\right) = x^{2}$$$.
$$\begin{array}{r|rrrrr:c}&x^{3}&{\color{GoldenRod}+x^{2}}&&&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&{\color{GoldenRod}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{GoldenRod}x^{3}}}{{\color{Magenta}x}} = {\color{GoldenRod}x^{2}}\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&{\color{GoldenRod}x^{2}} \left(x-1\right) = x^{3}- x^{2}\\\hline\\&&&x^{2}&+0 x&+0&\end{array}$$Step 3
Divide the leading term of the obtained remainder by the leading term of the divisor: $$$\frac{x^{2}}{x} = x$$$.
Write down the calculated result in the upper part of the table.
Multiply it by the divisor: $$$x \left(x-1\right) = x^{2}- x$$$.
Subtract the remainder from the obtained result: $$$\left(x^{2}\right) - \left(x^{2}- x\right) = x$$$.
$$\begin{array}{r|rrrrr:c}&x^{3}&+x^{2}&{\color{DarkBlue}+x}&&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&\\\hline\\&&&{\color{DarkBlue}x^{2}}&+0 x&+0&\frac{{\color{DarkBlue}x^{2}}}{{\color{Magenta}x}} = {\color{DarkBlue}x}\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&{\color{DarkBlue}x} \left(x-1\right) = x^{2}- x\\\hline\\&&&&x&+0&\end{array}$$Step 4
Divide the leading term of the obtained remainder by the leading term of the divisor: $$$\frac{x}{x} = 1$$$.
Write down the calculated result in the upper part of the table.
Multiply it by the divisor: $$$1 \left(x-1\right) = x-1$$$.
Subtract the remainder from the obtained result: $$$\left(x\right) - \left(x-1\right) = 1$$$.
$$\begin{array}{r|rrrrr:c}&x^{3}&+x^{2}&+x&{\color{Violet}+1}&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&\\\hline\\&&&x^{2}&+0 x&+0&\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&\\\hline\\&&&&{\color{Violet}x}&+0&\frac{{\color{Violet}x}}{{\color{Magenta}x}} = {\color{Violet}1}\\&&&&-\phantom{x}&&\\&&&&x&-1&{\color{Violet}1} \left(x-1\right) = x-1\\\hline\\&&&&&1&\end{array}$$Since the degree of the remainder is less than the degree of the divisor, we are done.
The resulting table is shown once more:
$$\begin{array}{r|rrrrr:c}&{\color{BlueViolet}x^{3}}&{\color{GoldenRod}+x^{2}}&{\color{DarkBlue}+x}&{\color{Violet}+1}&&\text{Hints}\\\hline\\{\color{Magenta}x}-1&{\color{BlueViolet}x^{4}}&+0 x^{3}&+0 x^{2}&+0 x&+0&\frac{{\color{BlueViolet}x^{4}}}{{\color{Magenta}x}} = {\color{BlueViolet}x^{3}}\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&{\color{BlueViolet}x^{3}} \left(x-1\right) = x^{4}- x^{3}\\\hline\\&&{\color{GoldenRod}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{GoldenRod}x^{3}}}{{\color{Magenta}x}} = {\color{GoldenRod}x^{2}}\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&{\color{GoldenRod}x^{2}} \left(x-1\right) = x^{3}- x^{2}\\\hline\\&&&{\color{DarkBlue}x^{2}}&+0 x&+0&\frac{{\color{DarkBlue}x^{2}}}{{\color{Magenta}x}} = {\color{DarkBlue}x}\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&{\color{DarkBlue}x} \left(x-1\right) = x^{2}- x\\\hline\\&&&&{\color{Violet}x}&+0&\frac{{\color{Violet}x}}{{\color{Magenta}x}} = {\color{Violet}1}\\&&&&-\phantom{x}&&\\&&&&x&-1&{\color{Violet}1} \left(x-1\right) = x-1\\\hline\\&&&&&1&\end{array}$$Therefore, $$$\frac{x^{4}}{x - 1} = \left(x^{3} + x^{2} + x + 1\right) + \frac{1}{x - 1}$$$.
Answer
$$$\frac{x^{4}}{x - 1} = \left(x^{3} + x^{2} + x + 1\right) + \frac{1}{x - 1}$$$A