Divide $$$x^{3}$$$ by $$$25 - x^{2}$$$

The calculator will divide $$$x^{3}$$$ by $$$25 - x^{2}$$$ using long division, with steps shown.

Related calculators: Synthetic Division Calculator, Long Division Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{x^{3}}{25 - x^{2}}$$$ using long division.

Solution

Write the problem in the special format (missed terms are written with zero coefficients):

$$$\begin{array}{r|r}\hline\\- x^{2}+25&x^{3}+0 x^{2}+0 x+0\end{array}$$$

Step 1

Divide the leading term of the dividend by the leading term of the divisor: $$$\frac{x^{3}}{- x^{2}} = - x$$$.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: $$$- x \left(- x^{2}+25\right) = x^{3}- 25 x$$$.

Subtract the dividend from the obtained result: $$$\left(x^{3}\right) - \left(x^{3}- 25 x\right) = 25 x$$$.

$$\begin{array}{r|rrrr:c}&{\color{DarkMagenta}- x}&&&&\\\hline\\{\color{Magenta}- x^{2}}+25&{\color{DarkMagenta}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{DarkMagenta}x^{3}}}{{\color{Magenta}- x^{2}}} = {\color{DarkMagenta}- x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&- 25 x&&{\color{DarkMagenta}- x} \left(- x^{2}+25\right) = x^{3}- 25 x\\\hline\\&&&25 x&+0&\end{array}$$

Since the degree of the remainder is less than the degree of the divisor, we are done.

The resulting table is shown once more:

$$\begin{array}{r|rrrr:c}&{\color{DarkMagenta}- x}&&&&\text{Hints}\\\hline\\{\color{Magenta}- x^{2}}+25&{\color{DarkMagenta}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{DarkMagenta}x^{3}}}{{\color{Magenta}- x^{2}}} = {\color{DarkMagenta}- x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&- 25 x&&{\color{DarkMagenta}- x} \left(- x^{2}+25\right) = x^{3}- 25 x\\\hline\\&&&25 x&+0&\end{array}$$

Therefore, $$$\frac{x^{3}}{25 - x^{2}} = - x + \frac{25 x}{25 - x^{2}}$$$.

Answer

$$$\frac{x^{3}}{25 - x^{2}} = - x + \frac{25 x}{25 - x^{2}}$$$A


Please try a new game Rotatly